![]() |
|
Choosing the Best Machine Learning Model - Printable Version +- Python Forum (https://python-forum.io) +-- Forum: General (https://python-forum.io/forum-1.html) +--- Forum: Code sharing (https://python-forum.io/forum-5.html) +--- Thread: Choosing the Best Machine Learning Model (/thread-38128.html) |
Choosing the Best Machine Learning Model - FelixLarry - Sep-06-2022 # Comparing classification algorithms
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
filename = 'pima-indians-diabetes.data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = pd.read_csv(filename, names=names)
array = dataframe.values
X = array[:,0:8]
y = array[:,8]
# Prepare models
models = []
models.append(('LR', LogisticRegression(solver='newton-cg')))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# Evaluate each model in turn
results = []
names = []
scoring = 'accuracy'
seed = 7
for name, model in models:
kfold = KFold(n_splits=10, shuffle=True, random_state=seed)
cv_results = cross_val_score(model, X, y, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = ('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))
print(msg)
# boxplot algorithm comparison
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
RE: Choosing the Best Machine Learning Model - praveencqr - Dec-23-2022 Could you please explain the benefits of the script? |